
2 Project Plan

2.1 PROJECT MANAGEMENT/TRACKING PROCEDURES

Our team plans to use a waterfall+agile management style. The nature of our project is such that

we can immediately begin adding features to the CrazyFlie, allowing an agile approach to work

well. We plan to track our progress in the project through a GitLab kanban board. Tasks/issues will

be created on the board as we begin development, which will then be assigned to different

members of the team. Additionally, milestones with due dates will be created to make sure we are

keeping a good pace as the project progresses.

2.2 TASK DECOMPOSITION

Tasks to complete:

1. Investigate CrazyFlie firmware architecture

a. Learn how to modify and flash new firmware to the CrazyFlie

b. What is the current architecture structure?

c. Can the control code be easily modified?

d. How easy is the control code to understand for new users?

2. Modify CrazyFlie firmware to be as modular as possible

a. Abstract the control code to a standardized interface to allow other control

algorithms to be easily implemented through an adapter architecture

b. Rewrite the existing control code to utilize the new interface

3. Add wifi capabilities to the CrazyFlie

a. Research current communication protocols in the CrazyFlie firmware

b. Electrical connection between wifi chip and CrazyFlie

c. Test communication over wifi

d. Control drone over wifi with less than 20 ms of latency

4. Test different control algorithms on the CrazyFlie

a. Write a basic PID control loop to maintain a stable hover, using the new interface

5. Develop ground station software to communicate with and control CrazyFlie

a. Start with command line interface on linux

b. Build a GUI/frontend once the backend is mostly working

6. Develop test stand hardware

a. Determine what electronics will be used to record & communicate data

b. Integrate chosen electronics into test stand for data collection

c. Design and print test stand model to mount CrazyFlie

7. Develop test stand software to measure and log rotation of the CrazyFlie while held in test

stand

a. Should collect and record all desired data from the CrazyFlie in real time

b. Should communicate with the ground station to allow for easy saving of log data

8. Write lab instructions and documentation for interfacing and using the modified CrazyFlie

a. Basic quick start guide

b. Detailed proposed lab activities

9. Stretch goal: Convert control algorithm from MatLab code to C code that works with our

interface

2.3 PROJECT PROPOSED MILESTONES, METRICS, AND EVALUATION CRITERIA

Project Milestones:

1. Working test stand prototype

a. 3D printed and assembled

b. Electronics selected and assembled

c. Firmware written and reporting back

2. Custom firmware running on CrazyFlie

a. First modified firmware running on CrazyFlie

b. Control software abstracted with adapter interface

c. Existing control code running through adapter

3. Custom ground station CLI

a. Control commands can be sent to CrazyFlie and a acknowledgement is sent back

4. Ground station GUI based on CLI

a. Basic GUI that sends pre configured commands through the CLI

b. More advanced GUI that displays flight data and allows for gamepad controls

2.4 PROJECT TIMELINE/SCHEDULE

 Gantt Chart attached as .xlsx file on canvas

2.5 RISKS AND RISK MANAGEMENT/MITIGATION

Risks:

1. Firmware is much harder to adapt to an adapter architecture, takes longer than expected,

60%

a. Mitigation plan: Begin researching and modifying the CrazyFlie firmware as soon

as possible. May need to push back tasks that are dependent on this, the different

control algorithms and lab instructions.

2. CLI cannot communicate with CrazyFlie, 30%

3. Wifi chip is not compatible, 50%

a. Mitigation plan: Look for other wifi alternative chips that are proven compatible

with the CrazyFlie. Else fall back to current radio communication protocols.

4. Wifi communication latency is greater than 30 ms, 70%

a. Mitigation plan: review previous years code, as they have worked with wifi in the

past and gotten the latency very low. speak with jones about this.

5. GUI takes too long to create, 40%

2.6 PERSONNEL EFFORT REQUIREMENTS

Task Estimate
(hours)

Explanation

Investigate CrazyFlie firmware

architecture

21 ± 5 Depends on firmware complexity

Learn how to modify and flash new

firmware to the CrazyFlie

4 - Read official documentation
- Build stock version of firmware and
upload to drone

What is the current architecture

structure?

5 - Read official documentation
- Read existing code
- Map out function calls for normal
operations

Can the control code be easily modified?
10

- Map out normal operation loops
- Modify the control logic to be more
general

How easy is the control code to

understand for new users?

2 - Evaluate code readability to novice
programers
- Frequency and quality of comments?

Modify CrazyFlie firmware to be as

modular as possible

35 ± 8 Depends on firmware complexity

Abstract the control code to a

standardized interface to allow other

control algorithms to be easily

implemented through an adapter

architecture

20 - Will likely require extensive
modifications to firmware to allow for a
modular, adapter architecture

Rewrite the existing control code to utilize

the new interface

15 - Depending on the complexity of the
existing control code, it could take a
long time to work around checks put in
place.

Add wifi capabilities to the CrazyFlie
36 ± 5

Research current communication

protocols in the CrazyFlie firmware

5 - Research the documentation and
potential changes need to be made

Electrical connection between wifi chip

and CrazyFlie

3 - Basic hardware connection between
the wifi card and the CrazyFlie

Test communication over wifi
8 - requires minor firmware

modifications

Control drone over wifi with less than 20

ms of latency

20 - The main development work for this
task, requires major firmware
modifications

Test different control algorithms on

the CrazyFlie

15

Write a basic PID control loop to maintain

a stable hover, using the new interface

15 - Create and refine a control algorithm
to control the CrazyFlie using the new
interface

Develop ground station software to

communicate with and control

CrazyFlie

30

Start with command line interface on

linux

10 - Some basic commands, basic C
program

Build a GUI/frontend once the backend is

mostly working

20 - Dependent on CLI
- Has to interface with controller

Develop test stand hardware
16

Determine what electronics will be used to

record & communicate data

3 - Evaluate desired data to be collected
- Select sensors to be used to collect
selected data types

Integrate chosen electronics into test

stand for data collection

6 - Design a solution to integrate the
sensors into the test stand design

Design and print test stand model to

mount CrazyFlie

7 - Complete a design for the test stand
- Work with the ETG to 3D print it

Develop test stand software to

measure and log rotation of the

CrazyFlie while held in test stand

20

Should collect and record all desired data

from the CrazyFlie in real time

8 - Create the firmware to manage
sensors and record desired data from
the drone

Should communicate with the ground

station to allow for easy saving of log data

12 - Create the software to communicate
the recorded data to the ground station

Write lab instructions and

documentation for interfacing and

using the modified CrazyFlie

12

Basic quick start guide
3 - Create a basic start manual to allow

users to operate the CrazyFlies

Detailed proposed lab activities
9 - Create mock lab activity

documentation to make use of the
CrazyFlies in an embedded systems lab

Stretch goal: Convert control

algorithm from MatLab code to C code

that works with our interface

TBD

2.7 OTHER RESOURCE REQUIREMENTS.

● Access to several CrazyFlie drones to test and develop on

● Development computers running linux to build and test the system on

● ETG access for 3D printing components of the test stand

